miércoles, 8 de diciembre de 2010

Nomenclatura química de los compuestos inorgánicos

 
Los compuestos inorgánicos se clasifican según la función química que contengan y por el número de elementos químicos que los forman, con reglas de nomenclatura particulares para cada grupo. Una función química es la tendencia de una sustancia a reaccionar de manera semejante en presencia de otra. Por ejemplo, los compuestos ácidos tienen propiedades características de la función ácido, debido a que todos ellos tienen el ion H+1; y las bases tienen propiedades características de este grupo debido al ion OH-1 presente en estas moléculas. Las principales funciones químicas son: óxidos, bases, ácidos y sales.

 Nomenclaturas

Se aceptan tres tipos de nomenclaturas para nombrar compuestos químicos inorgánicos:

Nomenclatura por atomicidad, sistemática o estequiométrica (Nomenclatura IUPAC)

Este sistema de nomenclatura se basa en nombrar a las sustancias usando prefijos numéricos griegos que indican la atomicidad de cada uno de los elementos presentes en la molécula. La atomicidad indica el número de átomos de un mismo elemento en una molécula, como por ejemplo H2O que significa que hay un átomo de oxígeno y dos átomos de hidrógeno presentes en la molécula, aunque en una fórmula química la atomicidad también se refiere a la proporción de cada elemento en el que se llevan a cabo las reacciones para formar el compuesto; en este estudio de nomenclatura es mejor tomar la atomicidad como el número de átomos en una sola molécula. La forma de nombrar los compuestos es: prefijo-nombre genérico + prefijo-nombre específico (Véase en la sección otras reglas nombre genérico y específico).
 
 
Prefijos griegos
Atomicidad
mono-
1
di-
2
tri-
3
tetra-
4
penta-
5
hexa-
6
hepta-
7
octa-
8
nona- (o eneá)
9
deca-
10
 
 
Por ejemplo, CrBr3 = tribromuro de cromo; CO = monóxido de carbono
En casos en los que puede haber confusión con otros compuestos (sales dobles y triples, oxisales y similares) se pueden emplear los prefijos bis-, tris-, tetras-, etc.
Ejemplo: Ca5F (PO4)3 = fluoruro tris (fosfato) de calcio, ya que si se usara el término trifosfato se estaría hablando del anión trifosfato [P3O10]5-, en cuyo caso sería:
Ca8F (P3O10)3.

Stock

Este sistema de nomenclatura se basa en nombrar a los compuestos escribiendo al final del nombre con números romanos la valencia atómica del elemento con “nombre específico” (valencia o número de oxidación, es el que indica el número de electrones que un átomo pone en juego en un enlace químico, un número positivo cuando tiende a ceder los electrones y un número negativo cuando tiende a ganar electrones), anteponiendo a este número, encerrado entre paréntesis, se escribe el nombre genérico y el específico del compuesto de esta forma: nombre genérico + de + nombre del elemento específico + el No. de valencia. Normalmente, a menos que se haya simplificado la fórmula, la valencia puede verse en el subíndice del otro átomo (en compuestos binarios y ternarios). Los números de valencia normalmente se colocan como superíndices del átomo en una fórmula molecular.
Ejemplo: Fe2+3S3-2, sulfuro de hierro (III) [se ve la valencia III del hierro en el subíndice o atomicidad del azufre].

 Nomenclatura tradicional, clásica o funcional

En este sistema de nomenclatura se indica la valencia del elemento de nombre específico con una serie de prefijos y sufijos griegos.
  • Cuando el elemento sólo tiene una valencia, simplemente se coloca el nombre del elemento precedido de la sílaba “de
(Na2O,oxido de sodio).
  • Cuando tiene dos valencias diferentes se usan los sufijos -oso e -ico.
-oso cuando el elemento usa la valencia menor: Fe+2O-2, hierro con la valencia +2, óxido ferroso
-ico cuando el elemento usa la valencia mayor: Fe2+3O3-2, hierro con valencia +3, óxido férrico[1]
  • Cuando tiene tres distintas valencias se usan los prefijos y sufijos
hipo -- oso (para la valencia inferior)
-oso (para la valencia intermedia)
-ico (para la valencia superior)
  • Cuando tiene cuatro distintas valencias se usan los prefijos y sufijos
hipo -- oso (para las valencias 1 y 2)
-oso (para la valencias 3 y 4)
-ico (para la valencias 5 y 6)
per -- ico (para la valencia 7):
  • Ejemplo: Mn2+7O7-2, óxido permangánico (ya que el manganeso tiene más de dos números de valencia y en este compuesto está trabajando con la valencia 7).

Óxidos básicos (metálicos)

Son aquellos óxidos que se producen entre el oxígeno y un metal cuando el oxígeno trabaja con un número de valencia -2. Su fórmula general es: Metal + O. En la nomenclatura Stock los compuestos se nombran con las reglas generales anteponiendo como nombre genérico la palabra óxido precedido por el nombre del metal y su número de valencia. En la nomenclatura tradicional se nombran con el sufijo -oso e -ico dependiendo de la menor o mayor valencia del metal que acompaña al oxígeno. Y en la nomenclatura sistemática se utilizan las reglas generales con la palabra óxido como nombre genérico.
En la nomenclatura tradicional para los óxidos que se enlazan con metales que tienen más de dos números de valencia se utilizan las siguientes reglas: metales con números de valencia hasta el 3 se nombran con las reglas de los óxidos y los metales con números de valencia iguales a 4 y mayores se nombran con las reglas de los anhídridos. Ejemplos: V2+3O3-2 se nombra como óxido, óxido vanádico; V2+5 O5-2 se nombra como anhídrido, anhídrido vanádico. Los átomos de vanadio con número de valencia 2 (-oso) y 3 (-ico) se nombran como óxidos y los átomos de vanadio con números de valencia 4 (-oso) y 5 (-ico) como anhídridos.
Metal + Oxígeno → Óxido básico
4Fe + 3O2 → 2Fe2O3
 
Compuesto
Nomenc. sistemática
Nomenc. Stock
Nomenc. tradicional
K2O
monóxido de dipotasio u óxido de dipotasio
óxido de potasio (I) u óxido de potasio
óxido potásico u óxido de potasio
Fe2O3
trióxido de dihierro
óxido de hierro (III)
óxido férrico
FeO
monóxido de hierro
óxido de hierro (II)
óxido ferroso
SnO2
dióxido de estaño
óxido de estaño (IV)
óxido estánico
 
 
Cuando los no metales, nitrógeno y fósforo, trabajan con números de valencia 4 y 2, mientras se enlazan con el oxígeno se forman óxidos (ver la sección de anhídridos, penúltimo párrafo).

Óxidos ácidos o anhídridos (no metálicos)

Son aquellos formados por la combinación del oxígeno con un no metal. Su fórmula general es no metal + O. En este caso, la nomenclatura tradicional emplea la palabra anhídrido en lugar de óxido, a excepción de algunos óxidos de nitrógeno y fósforo. La nomenclatura sistemática y la Stock nombran a los compuestos con las mismas reglas que en los óxidos metálicos. En la nomenclatura tradicional se nombran con los siguientes sufijos y prefijos.
hipo -- oso (para números de valencia 1 y 2)
-oso (para números de valencia 3 y 4)
-ico (para números de valencia 5 y 6)
per -- ico (para el número de valencia 7)
No metal + Oxígeno → Anhídrido
2S + 3O2 → 2SO3
 
 
Compuesto
Nomenc. sistem.
Nomenc. Stock
Nomenc. tradicional
Cl2O
óxido de dicloro o monóxido de dicloro
óxido de cloro (I)
anhídrido hipocloroso
SO3
trióxido de azufre
óxido de azufre (VI)
anhídrido sulfúrico
Cl2O7
heptóxido de dicloro
óxido de cloro (VII)
anhídrido perclórico
 
 

Hidrácidos e hidruros no metálicos

Los hidrácidos (compuestos binarios ácidos) e hidruros no metálicos son compuestos formados entre el hidrógeno y un no metal de las familias VIA y VIIA ( anfígenos y halógenos respectivamente). Los elementos de estas dos familias que pueden formar hidrácidos e hidruros no metálicos son: S, Se, Te, F, Cl, I y Br, que por lo general trabajan con el menor número de oxidación, -2 para los anfígenos y -1 para los halógenos. Estos compuestos se nombran en el sistema tradicional y de forma diferente según si están disueltos (estado acuoso) o en estado puro (estado gaseoso). Los hidrácidos pertenecen al grupo de los ácidos, Ver la sección oxácidos.
Los hidruros no metálicos son los que se encuentran en estado gaseoso o estado puro y se nombran agregando al no metal el sufijo -uro y la palabra hidrógeno precedido de la sílaba “de”. En este caso el nombre genérico es para el elemento más electropositivo que sería el del hidrógeno y el nombre especifico es para el elemento más electronegativo que sería el del no metal, por ejemplo H+1 Br-1 (g) bromuro de hidrógeno, bromuro como nombre especifico e hidrógeno como nombre genérico.
No metal + Hidrógeno → Hidruro no metálico
Cl2 + H2 → 2HCl(g)
Los hidrácidos provienen de disolver en agua a los hidruros no metálicos y por esa misma razón son estos los que se encuentran en estado acuoso. Se nombran con la palabra ácido, como nombre genérico, y como nombre específico se escribe el nombre del no metal y se le agrega el sufijo –hídrico. Al igual que en estado gaseoso el nombre genérico es nombrado por el elemento más electropositivo.
Hidruro No metálico + Agua → Hidrácido
HCl(g) + H2O → H+1 + Cl-1
 
 
Compuesto
en estado puro
en disolución
HCl
cloruro de hidrógeno
ácido clorhídrico
HF
fluoruro de hidrógeno
ácido fluorhídrico
HBr
bromuro de hidrógeno
ácido bromhídrico
HI
yoduro de hidrógeno
ácido yodhídrico
H2S
sulfuro de hidrógeno
ácido sulfhídrico
H2Se
seleniuro de hidrógeno
ácido selenhídrico
H2Te
teluluro de hidrógeno
ácido telurhídrico
 
 
 

martes, 2 de noviembre de 2010

ENLACES QUIMICOS

Un enlace químico es el proceso físico responsable de las interacciones atractivas entre átomos y moléculas, y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área compleja que está descrita por las leyes de la electrodinámica cuántica. Sin embargo, en la práctica, los químicos suelen apoyarse en la mecánica cuántica o en descripciones cualitativas que son menos rigurosas, pero más sencillas en su descripción del enlace químico. En general, el enlace químico fuerte está asociado con la compartición o transferencia de electrones entre los átomos participantes. Las moléculas, cristales, y gases diatómicos -o sea la mayor parte del ambiente físico que nos rodea- está unido por enlaces químicos, que determinan la estructura de la materia.
REGLA DEL OCTETO

La regla del octeto, enunciada en 1917 por Gilbert Newton Lewis, dice que la tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8 electrones tal que adquiere una configuración semejante a la de un gas noble, ubicados al extremo derecho de la tabla periódica y son inertes, es decir que es muy difícil que reaccionen con algún otro elemento pese a que son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del
número de enlaces por átomo, y de las fuerzas intermoleculares.

ESTRUCTURA DE LEWIS

Las estructuras de Lewis son representaciones adecuadas y sencillas de iones y compuestos, que facilitan el recuento exacto de electrones y constituyen una base importante para predecir estabilidades relativas.


ENLACE IONICO
Se denomina enlace iónico al enlace químico de dos o más átomos cuando éstos tienen una diferencia de electronegatividad de 1,7 ó mayor. Este tipo de enlace fue propuesto por W. Kossel en 1916.
En una unión de dos átomos por enlace iónico, un electrón abandona el átomo menos electronegativo y pasa a formar parte de la nube electrónica del más electronegativo. El cloruro de sodio (la sal común) es un ejemplo de enlace iónico: en él se combinan sodio y cloro, perdiendo el primero un electrón que es capturado por el segundo:
NaCl Na+Cl-
De esta manera se forman dos iones de carga contraria: un catión (de carga positiva) y un anión (de carga negativa). La diferencia entre las cargas de los iones provoca entonces una fuerza de interacción electromagnética entre los átomos que los mantiene unidos. El enlace iónico es la unión en la que los elementos involucrados aceptarán o perderán electrones.
En una solución, los enlaces iónicos pueden romperse y se considera entonces que los iones están disociados. Es por eso que una solución fisiológica de cloruro de sodio y agua se marca como: Na+ + Cl-, mientras que los cristales de cloruro de sodio se marcan:Na+Cl- o simplemente NaCl.

ENLACE COVALENTE
Un enlace covalente se produce por compartición de electrones entre dos átomos. Este tipo de enlace se produce cuando existe electronegatividad polar pero la diferencia de electronegatividades entre los átomos no es suficientemente grande como para que se efectúe transferencia de electrones. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos no metales.
Existen dos tipos de sustancias covalentes:
Sustancias covalentes moleculares: los enlaces covalentes forman moléculas que tienen las siguientes propiedades:
  • Temperaturas de fusión y ebullición bajas.
  • En condiciones normales (25 °C aprox.) pueden ser sólidos, líquidos o gaseosos
  • Son blandos en estado sólido.
  • Son aislantes de corriente eléctrica y calor.
  • Solubilidad: las moléculas polares son solubles en disolventes polares y las apolares son solubles en disolventes apolares (semejante disuelve a semejante).
Redes: además las sustancias covalentes forman redes, semejantes a los compuestos iónicos, que tienen estas propiedades:
  • Elevadas temperaturas de fusión y ebullición.
  • Son sólidos
  • Son sustancias muy duras (excepto el grafito).
  • Son aislantes (excepto el grafito).
  • Son insolubles.
  • Son neocloridas
 

ENLACE METALICO
Un enlace metálico es un enlace químico que mantiene unidos los átomos (unión entre nucleos atomicos y los electrones de valencia que se agrupan alrededor de estos como una nube) de los metales entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de redes tridimensionales que adquieren la estructura típica de empaquetamiento compacto de esferas. En este tipo de estructura cada átomo metálico está rodeado por otros doce átomos (seis en el mismo plano, tres por encima y tres por debajo). Además, debido a la baja electronegatividad que poseen los metales, los electrones de valencia son extraídos de sus orbitales y tienen la capacidad de moverse libremente a través del compuesto metálico, lo que otorga a éste las propiedades eléctricas y térmicas. Este enlace sólo puede presentarse en sustancias en estado sólido.
Características de los Metales
Las características básicas de los elementos metálicos son producidas por la naturaleza del enlace metálico. Entre ellas destacan:
  1. Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y sus puntos de fusión y ebullición varían notablemente.
  2. Las conductividades térmicas y eléctricas son muy elevadas (esto se explica por la enorme movilidad de sus electrones de valencia menor).
  3. Presentan brillo metálico, por lo que son menos electronegativos.
  4. Son dúctiles y maleables (la enorme movilidad de los electrones de valencia hace que los cationes metálicos puedan moverse sin producir una situación distinta, es decir, una rotura).
  5. Pueden emitir electrones cuando reciben energía en forma de calor.
  6. Tienden a perder electrones de sus últimas capas cuando reciben cuantos de luz (fotones), fenómeno conocido como efecto fotoeléctrico.


FUERZAS INTERMOLECULARES
Las fuerzas intermoleculares se producen cuando los átomos pueden formar unidades estables llamadas moléculas mediante el compartimiento de electrones. Las fuerzas intermoleculares, fuerzas de atracción entre moléculas a veces también reciben el nombre de enlaces intermoleculares aunque son considerablemente más débiles que los enlaces iónicos, covalentes y metálicos. Las principales fuerzas intermoleculares son

Fuerza dipolo-dipolo.
Las fuerzas dipolo-dipolo existen entre las moléculas polares neutras; las moléculas polares se atraen unas a otras cuando el extremo positivo de una molécula está cerca del extremo negativo de otra. Esta fuerza es débil y para ser efectivas deben de estar las moléculas polares muy próximas (Las moléculas polares deben de estar cerca unas de otras para que la fuerza atractiva de la interacción sea significativa).
Ocurre cuando los átomos de una molécula tienen diferencias de x, se polarizan, produciendo un dipolo.
Cuando dos dipolos se avecindan, se atraen, dando como resultado un enlace.
Las fuerzas dipolo-dipolo crecen al incrementarse la polaridad de una molécula.

 

Fuerza de van der Waals.
Las fuerzas de atracción explican la cohesión de las moléculas en los estados líquido y sólido de la materia, y se llaman fuerzas de largo alcance o fuerzas de van der Waals en honor al físico holandés Johannes Diderik van der Waals. Estas fuerzas son las responsables de muchos fenómenos físicos y químicos como la adhesión, el rozamiento, la difusión, la tensión superficial y la viscosidad.
Fuerza intermolecular atractiva, pero poco intensa, que se ejerce a distancia entre moléculas. Son fuerzas de origen eléctrico que pueden tener lugar entre dipolos instantáneos o inducidos y entre dipolos permanentes.
 


Puente de hidrógeno o enlace de hidrógeno.
El enlace no sólo se produce entre átomos, sino que también se realiza, aunque más débilmente, entre moléculas.
Cuando este elemento se encuentra unido covalentemente a un átomo electronegativo se produce una polaridad en el enlace que le confiere un porcentaje de carácter iónico. El hidrógeno queda con una densidad de carga positiva, y es atraído por un par de electrones no compartidos, de un átomo electronegativo, con lo que se produce el puente o enlace. Este último átomo debe tener un volumen pequeño para que su densidad de carga sea grande y pueda ejercer la atracción electroestática requerida por un átomo de hidrógeno. Es el caso del flúor, el oxígeno y el nitrógeno. El cloro, por ejemplo, debido a su gran volumen, nunca podrá participar en este tipo de enlace.